Progress towards a new international standard for storing nuclear data

CSEWG 2016

Caleb Mattoon

Motivation: the ENDF-6 format is having trouble keeping up with expanding needs of nuclear data users.

- For over 50 years, ENDF-6 has been the standard for storing and exchanging nuclear data
 - Originally neutrons only, has since expanded to handle other particles.
 - Format gradually modified to support double-differential distributions, covariances, more types of reactions, etc.
 - Data are computer-readable... except when they aren't!
 - Format limitations sometimes force evaluators to use non-standard data representations like the 'LIP' product modifier flag: "The exact meaning assigned to LIP should be explained in the File 1, MT=451 comments"
 - Despite format checking codes, bugs in ENDF-6 evaluations remain difficult to find and fix!
- New generation of nuclear data experts asks for modern tools to handle data!

Original proposal to WPEC by McNabb:

LLNL has made an initial attempt at a new format, which can be downloaded at https://ndclx4.bnl.gov/gf/project/gnd/

- Sub-group participants will
 - Develop a common data model for reaction data
 - Agree on best practices and how to "enforce" them
 - Test things out with their local ENDF-formatted databases
 - Propose a process for dissemination and future modifications
- LLNL and USNDP is committed to seeing this through
- Benefits are significant
 - Attract and retain next generation of scientists and engineers
 - Leverage significant infrastructure that will continue to evolve
 - Overcomes limitations of existing format in an extensible way
 - Positions community to link disparate data products to each other

WPEC subgroup #38 was approved in May 2012, and has since met seven times (plus multiple phone conferences)

- Meetings mainly held at the NEA (Paris), but also at JAEA, BNL,
 IAEA and OECD
- Contributors from all data projects joined in the discussions.

SG38 work was divided into several sub-tasks:

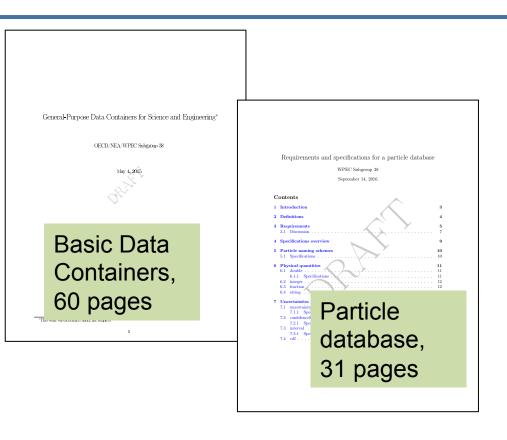
- Low-level data containers
 - Similar to ENDF LIST, TAB1, TAB2, etc.
 - Work with other data projects (e.g., ENSDF, EXFOR, RIPL)
- Hierarchy for storing particle data and nuclear level schemes and decay data
- Top-level hierarchy for storing nuclear reaction data
- Infrastructure for data handling, processing, plotting, etc.
- API for reading and writing data in the new structure
- Defining the tests that will be needed to assure quality of data
- Documentation and governance

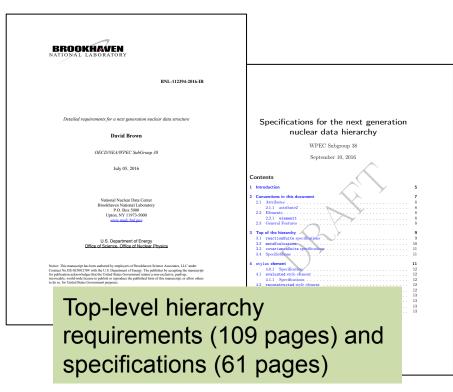
SG38 work was divided into several sub-tasks:

- Low-level data containers
 - Similar to ENDF LIST, TAB1, TAB2, etc.
 - Work with other data projects (e.g., ENSDF, EXFOR, RIPL)

Nearly complete

- Hierarchy for storing particle data and nuclear level schemes and decay data
- Top-level hierarchy for storing nuclear reaction data
- Infrastructure for data handling, processing, plotting, etc.


Continued in SG43


- API for reading and writing data in the new structure
- Defining the tests that will be needed to assure quality of data
- Documentation and governance

SG-B is being revived to provide long-term governance

SG38 will be completed with the publication of 4 'requirements and specifications' documents

All available at https://www.oecd-nea.org/science/wpec/sg38/

Brief overview of some SG38 specifications: basic data containers

 1-d functions (such as cross section and nubar) are stored as a list of (x,y) pairs with interpolation:

Changing interpolations are handled with a 'regions' container:

Brief overview of some SG38 specifications: basic data containers

 2-d functions (i.e. outgoing energy distributions) are similar to TAB2, composed of 1-d functions along with an interpolation rule:

 Other data containers include series (i.e. Legendre expansions and other polynomials), multi-dimensional arrays, 'gridded' arrays (used to store covariances and transfer matrices), and tables (for resonance parameters)

Brief overview of SG38 specifications: overall organization of data

 GND 'reactionSuite' is similar to ENDF-6 'MAT'. Data inside the reactionSuite are organized in a nested hierarchy

```
- <reactionSuite projectile="n" target="Mn55" version="GND 1.7" projectileFrame="lab">
+ <styles> </styles>
+ <documentations> </documentations>
+ <aliases> </aliases>
+ <particles> </particles>
+ <resonances reconstructCrossSection="true"> </resonances>
+ <reactions> </reactions>
+ <sums> </sums>
+ <productions> </productions>
</reactionSuite>
```

Brief overview of SG38 specifications: overall organization of data

 Largest section is <reactions>, containing the list of all reactions that sum to total:

```
<reactions>
+ <reaction label="0" outputChannel="n + Mn55" date="2011-02-01" ENDF_MT="2"></reaction>
+ <reaction label="1" outputChannel="n + Mn55_e1" date="2011-02-01" ENDF_MT="51"></reaction>
+ <reaction label="2" outputChannel="n + Mn55_e2" date="2011-02-01" ENDF_MT="52"></reaction>
+ <reaction label="3" outputChannel="n + Mn55_e3" date="2011-02-01" ENDF_MT="53"></reaction>
+ <reaction label="4" outputChannel="n + Mn55_e4" date="2011-02-01" ENDF_MT="54"></reaction>
+ <reaction label="5" outputChannel="n + Mn55_e5" date="2011-02-01" ENDF_MT="55"></reaction>
+ <reaction label="6" outputChannel="n + Mn55_e6" date="2011-02-01" ENDF_MT="56"></reaction>
+ <reaction label="6" outputChannel="n + Mn55_e6" date="2011-02-01" ENDF_MT="56"></reaction>
+ <reaction label="8" outputChannel="n + Mn55_e8" date="2011-02-01" ENDF_MT="57"></reaction>
+ <reaction label="8" outputChannel="n + Mn55_e8" date="2011-02-01" ENDF_MT="58"></reaction>
+ <reaction label="8" outputChannel="n + Mn55_e8" date="2011-02-01" ENDF_MT="58"></reaction>
+ <reaction label="9" outputChannel="n + Mn55_e9" date="2011-02-01" ENDF_MT="59"></reaction>
+ <reaction label="9" outputChannel="n + Mn55_e9" date="2011-02-01" ENDF_MT="59"></reaction>
+ </re>
```

Brief overview of SG38 specifications: contents of a 'reaction'

 Each reaction stores a cross section and an outputChannel (with a Q-value and a list of products):

```
<reactions>
- <reaction label="0" outputChannel="n + Mn55" date="2011-02-01" ENDF_MT="2">
  + <crossSection></crossSection>
  - <outputChannel genre="twoBody">
    +<0></0>
    - cproducts>
       - - product name="n" label="n">
         + <multiplicity></multiplicity>
         + < distribution > < / distribution >
        - - - - - product name="Mn55" label="Mn55" ENDFconversionFlag="implicitProduct">-
         + <multiplicity></multiplicity>
         + < distribution > </ distribution >
        </product>
      </products>
    </outputChannel>
  </reaction>
+ <reaction label="1" outputChannel="n + Mn55_e1" date="2011-02-01" ENDF_MT="51"></reaction>
```

Brief overview of SG38 specifications: using 'styles' to store more than one type of data

 GND can store various types of processed data along with evaluated data. 'styles' section has a directory of data types:

 Each data style may appear inside crossSection, multiplicity, distribution, etc.

```
<crossSection>
+ <resonancesWithBackground label="eval" style="eval"></resonancesWithBackground>
+ <XYs1d label="recon" style="recon"></XYs1d>
+ <XYs1d label="h1" style="h1" accuracy="0.002"></XYs1d>
+ <XYs1d label="h2" style="h2" accuracy="0.002"></XYs1d>
</crossSection>
```

SG38 work will continue with new subgroup #43 and long-term subgroup B:

- Low-level data containers
 - Similar to ENDF LIST, TAB1, TAB2, etc.
 - Work with other data projects (e.g., ENSDF, EXFOR, RIPL)

Nearly complete

- Hierarchy for storing particle data and nuclear level schemes and decay data
- Top-level hierarchy for storing nuclear reaction data
- Infrastructure for data handling, processing, plotting, etc.

Continued in SG43

- API for reading and writing data in the new structure
- Defining the tests that will be needed to assure quality of data
- Documentation and governance

SG-B is being revived to provide long-term governance

New subgroups will officially start in May 2017. Now working to define their goals and scope:

SG-B

- From proposal: "... propose that a new WPEC long-term subgroup become the stewards of a new international standard for a modern nuclear database structure."
 - Endorse, promote and maintain the new format. Includes facilitating training and education for evaluators, and approving and adopting future changes.

SG43

- Provides infrastructure to accompany the new format. Main goals:
 - Design and implement an API to read and write GND-formatted files
 - Define a list of tests (including data format tests and physics tests) that need to be implemented for data quality assurance.

SG-38 produced a format specification, now focus turns to disseminating the format and building infrastructure.

 SG-38 requirements and specifications documents under final revision, will be published soon

SG-B takes on format governance

 SG-43 expands the infrastructure for generating, checking, manipulating and using GND-formatted data

